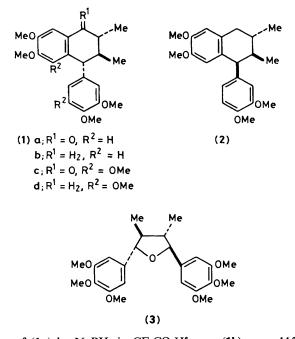
New Reagent System containing CrO₃ and Syntheses of Neo-lignans

Tetsuya Takeya, Eiichi Kotani, and Seisho Tobinaga*


Showa College of Pharmaceutical Sciences, Setagaya-ku, Tokyo, Japan 154

Oxidations of 1-arylprop-1-enes by the new reagent systems, CrO_3 -HBF₄-MeCN or CrO_3 -HCIO₄-MeCN gave the 4-aryltetralones (1a) and (1c), and the tetrahydrofuran (3) which are precursor molecules for aryltetrahydronaphthalene and tetrahydrofuran neo-lignans.

Chromic anhydride (among other metal oxides) has been widely used as a reagent in oxidations of organic compounds and several kinds of reagent systems¹ and reagents, namely, Collin's reagent, pyridinium chlorochromate (PCC), pyridinium dichromate (PDC),² and 2,2'-bipyridinium chlorochromate,³ have been developed recently. Although several solvents such as water, acetone, acetic acid, acetic anhydride, pyridine, and dimethylformamide are involved in different reagent systems using CrO_3 , little attention has been paid to solvent effects. Interest has centred, recently, on the solvent effects for reactions of metals and metal ions with a view to activating organic substrates⁴ and formation of complexes with donor solvents leading to changes in redox potentials.⁵ We have studied the behaviour of CrO_3 in donor solvents particularly in acidic media as an alternative to Jones' reagent. CrO_3 in MeCN in the presence of aqueous HBF₄ or HClO₄ gives improved oxidations of 1-arylprop-1-enes relative to reagents other than Jones' reagent.

Oxidation of (E)-1-(3,4-dimethoxyphenyl)prop-1-ene by the system CrO_3 (100 mg)-MeCN (8 ml) in 42% aqueous HBF₄ (2 ml) gave after a few minutes the tetralone (1a), m.p. 124–126 °C, in 16% yield as the only identifiable product.† Reduc-

[†] Reactions at a lower temperature $(-30 \ ^{\circ}C)$ or under high dilution gave complex products including veratraldehyde and (1a), the latter in lower yield than at room temperature.

tion of (1a) by NaBH₄ in CF₃CO₂H⁶ gave (1b), m.p. 115— 117 °C, which is identical to (\pm) -galbulin.⁷ The structure of (1a) was assigned by considering the latter result, and from its n.m.r. data which showed a coupling constant of 10 Hz between C(3)-H and C(2)-H. Catalytic reduction on 10% Pd-C of (1a), though, afforded a novel tetralin (2), m.p. 102—103 °C; n.m.r. (CDCl₃) δ 0.74 [3H, d, J 5.9 Hz, C(3)-Me], 1.15 [3H, d, J 6.8 Hz, C(2)-Me], 1.91—2.18 [2H, m, C(2)-H, C(3)-H], 2.45—2.82 [2H, m, C(1)-H], 2.91 [1H, d, J 7.2 Hz, C(4)-H], 3.96 (3H, s, OMe), 3.87 [6H, s, (OMe)₂], 3.88 (3H, s, OMe), 6.60—6.74 (4H, m, Ar-H) and 6.78 [1H, s, C(5)-H]. The structure of (2) can be postulated from the following n.m.r. data: (i) the C(3)-Me resonance occurs at δ 0.74 owing to the shielding effect of the phenyl group, and

(ii) there is a coupling constant of 7.2 Hz between C(3)-H and C(4)-H.

Oxidations of (*E*)- and (*Z*)-1-(3,4,5-trimethoxyphenyl)prop-1-enes by the same reagent system gave the tetralone (1c), m.p. 135—137 °C, and the tetrahydrofuran (3), m.p. 126—128 °C, which is identical to (\pm) -grandisin,⁸ in 14.3 and 17.7% yield, respectively. Compound (1c) was reduced to the tetralin (1d),⁶ m.p. 130—132 °C, with NaBH₄ in CF₃CO₂H.

Oxidations of 1-arylprop-1-enes by CrO_3 -MeCN with aqueous HClO₄ instead of aqueous HBF₄ led to similar results. However, Jones' reagent and the oxidising system CrO_3 -MeCN-H₂SO₄(aq.) gave only the corresponding aldehydes.

To unravel the contrasting nature of these oxidation reactions we measured electrode potentials of CrO_3 in some donor solvents. The highest reduction potential, 1632 mV vs. the saturated calomel reference electrode (S.C.E.), occurred in MeCN whilst in Ac₂O and Me₂CO the potentials were, respectively, 1381 and 1094 mV vs. S.C.E. For the acid media the electrode potentials of CrO_3 -HBF₄-MeCN, CrO_3 -H₂SO₄--MeCN, and CrO_3 -HBF₄-Me₂CO were 1174, 1098, and 1078 mV vs. S.C.E., respectively.

Received, 21st June 1982; Com. 719

References

- 1 L. F. Fieser and M. Fieser, 'Reagents for Organic Synthesis,' vol. 1, Wiley, New York, 1967.
- 2 M. Fieser, R. L. Danheiser, and W. Roush, 'Reagents for Organic Synthesis,' vol. 9, Wiley, New York, 1981.
- 3 F. S. Guziec, Jr., and F. A. Luzzio, Synthesis, 1980, 691.
- 4 J. A. Davies and F. R. Hartley, Chem. Rev., 1981, 81, 79.
- 5 V. Gutmann, Fortschr. Chem. Forsch., 1972, 27, 59.
- 6 G. W. Gribble, W. J. Kelly, and S. E. Emery, *Synthesis*, 1978, 763.
- 7 T. Biftu, B. G. Hazra, R. Stevenson, and J. R. Williams, J. Chem. Soc., Perkin Trans. 1, 1978, 1147.
- 8 K. V. Sarkanen and A. F. A. Wallis, J. Chem. Soc., Perkin Trans. 1, 1973, 1869.